Volume 3 Issue 3 Article 3

Overview of Medical Waste Incineration Systems

Writer(s): Emre Dalkılıç 1, Şükrü Dursun 2,

Medical wastes are wastes released during healthcare. The institutions with the highest medical waste generation are hospitals. However, medical wastes are generated at many points, such as health cabins, pharmacies and infirmary facilities that employ more than 50 workers. Although 75-90% of these wastes fall under the general waste category, the rest fall into hazardous waste. Medical wastes are beginning to form in large volumes today due to the developing technology, increasing welfare level and widespread health services. Especially, the increase in the use of disposable devices and consumables used to provide hygiene are the most important factors that increase the formation of medical waste. In addition to being infected, medical wastes contain hazardous chemicals, drugs, toxins, radioactive substances, etc. Medical wastes are in hazardous / risky waste group that threatens human and environmental health. The separation, temporary storage, transportation and disposal of medical wastes in hospitals is critical for the environment and human health. In this study, investigation of waste incineration processes, one of the methods of disposal of medical wastes threatening the environment and human health, and examination of emissions released after incineration will be carried out.

Keyword(s): Medical Waste, Waste Disposal, Waste Incineration Systems,

  • [1] Gören, S. and M. Esen, Tıbbi Atık Yakma Küllerinde Ağır Metal Giderimi. Ekoloji, 2010. 19(77): p. 51-58.
  • [2] Birpınar, M.E., M.S. Bilgili, and T. Erdoğan, Medical waste management in Turkey: A case study of Istanbul. Waste management, 2009. 29(1): p. 445-448.
  • [3] Koçak, O., et al. A medical waste management model for public private partnership hospitals. in 2016 Medical Technologies National Congress (TIPTEKNO). 2016. IEEE.
  • [4] Cheng, Y., et al., Medical waste production at hospitals and associated factors. Waste Management, 2009. 29(1): p. 440-444.
  • [5] Özerol, İ.H., Tıbbi Atık Stratejileri Nelerdir? EN/ISO Normları Nelerdir? Avrupa’da Birlik? ABD’nin Yaklaşımı? Ülkemizde Durum? 4. Ulusal Sterilizasyon Dezenfeksiyon Kongresi, 2005: p. 434-472.
  • [6] Vancini, F., Strategic waste prevention. 2000, OECD reference manual. OECD ENV/EPOC/PPC (2000).
  • [7] Öztürk, M., Sağlık kuruluşlarında atık yönetimi, tıbbi atıkların kontrolü yönetmeliği ve getirdiği sorumluklar. 2007.
  • [8] Erdoğan, Ö., Tıbbi atık yönetimi. Hemşirelik uygulamalarında klinik mikrobiyoloji ve enfeksiyon hastalıkları. Ankara: Hipokrat Kitabevi, 2018.
  • [9] Savcı, G., Tıbbi Atıkların Toplanması ve Bertarafında İş Sağlığı ve Güvenliği, in Çevre Mühendisliği Anabilim Dalı. 2014, Cumhuriyet Üniversitesi: Ulusal Tez Merkezi.
  • [10] TürkiyeÇevreveOrmanBakanlığı, Türkiye Tıbbi Atıkların Kontrolü Yönetmeliği, in Resmi Gazete No: 25883. 2005: Ankara, Türkiye.
  • [11] Varinca, K., C. Esmen, and Y. Avsar. A New Model in the Medical Waste Management. in Eurasia Waste Management Symposium. 2011.
  • [12] Lee, C. and G. Huffman, Medical waste management/incineration. Journal of Hazardous Materials, 1996. 48(1-3): p. 1-30.
  • [13] Chen, Y., et al., Key issues study on the operation management of medical waste incineration disposal facilities. Procedia Environmental Sciences, 2012. 16: p. 208-213.
  • [14] Singh, S. and V. Prakash, Toxic environmental releases from medical waste incineration: a review. Environmental monitoring and assessment, 2007. 132(1-3): p. 67-81.
  • [15] Oppelt, E.T., Incineration of hazardous waste. JAPCA, 1987. 37(5): p. 558-586.
  • [16] Lee, W.-J., et al., Emission of polycyclic aromatic hydrocarbons from medical waste incinerators. Atmospheric Environment, 2002. 36(5): p. 781-790.
  • [17] Ly, H.P., et al., Envıronmentally Clean Processıng Of Munıcıpal Solıd Wastes. APEC Youth Scientist Journal, 2011. 3: p. 37-48.
  • [18] Morselli, L., et al., Environmental impacts of waste incineration in a regional system (Emilia Romagna, Italy) evaluated from a life cycle perspective. Journal of Hazardous Materials, 2008. 159(2-3): p. 505-511.
  • [19] Ibanez, R., et al., Characterisation and management of incinerator wastes. Journal of hazardous materials, 2000. 79(3): p. 215-227.
  • [20] Jang, Y.-C., et al., Medical waste management in Korea. Journal of environmental management, 2006. 80(2): p. 107-115.
  • [21] Allsopp, M., P. Costner, and P. Johnston, Incineration and human health. Environmental Science and Pollution Research, 2001. 8(2): p. 141-145.
  • [22] Alvim-Ferraz, M.C. and S.A. Afonso, Incineration of different types of medical wastes: emission factors for particulate matter and heavy metals. Environmental science & technology, 2003. 37(14): p. 3152-3157.
  • [23] Valavanidis, A., et al., Metal leachability, heavy metals, polycyclic aromatic hydrocarbons and polychlorinated biphenyls in fly and bottom ashes of a medical waste incineration facility. Waste Management & Research, 2008. 26(3): p. 247-255.
  • [24] Thompson, L.J., et al., Variation in elemental concentrations of veterinary college incinerator ashes with time of sampling. Chemosphere, 1996. 32(9): p. 1855-1858.
  • [25] Dumanoğlu, A.B.v.Y. Yanma Kaynaklı Kirleticiler. Yanma Kaynaklı Kirleticiler 2020 [cited 2020 22.05.2020]; Available from: http://kisi.deu.edu.tr/userweb/yetkin.dumanoglu/CEV3016/ Ders-42 _Yanma_Kaynakl%C4%B1_Kirleticiler.pdf.
  • [26] Karademir, A., Health risk assessment of PCDD/F emissions from a hazardous and medical waste incinerator in Turkey. Environment international, 2004. 30(8): p. 1027-1038.
  • [27] Buekens, A., et al., Fingerprints of dioxin from thermal industrial processes. Chemosphere, 2000. 40(9-11): p. 1021-1024.
  • [28] Yan, J., et al., Degradation of PCDD/Fs by mechanochemical treatment of fly ash from medical waste incineration. Journal of hazardous materials, 2007. 147(1-2): p. 652-657.
  • [29] Stieglitz, L., et al., Carbonaceous particles in fly ash-a source for the de-novo-synthesis of organochlorocompounds. Chemosphere, 1989. 19(1-6): p. 283-290.
  • [30] Stieglitz, L., et al., On formation conditions of organohalogen compounds from particulate carbon of fly ash. Chemosphere, 1991. 23(8-10): p. 1255-1264.
  • [31] Marr, L.C., et al., Characterization of polycyclic aromatic hydrocarbons in motor vehicle fuels and exhaust emissions. Environmental science & technology, 1999. 33(18): p. 3091-3099.
  • [32] Miguel, A.H., et al., On-road emissions of particulate polycyclic aromatic hydrocarbons and black carbon from gasoline and diesel vehicles. Environmental Science & Technology, 1998. 32(4): p. 450-455.
  • [33] Shihadeh, A., et al., Does switching to a tobacco-free waterpipe product reduce toxicant intake? A crossover study comparing CO, NO, PAH, volatile aldehydes,“tar” and nicotine yields. Food and Chemical Toxicology, 2012. 50(5): p. 1494-1498.
  • [34] Zanieri, L., et al., Polycyclic aromatic hydrocarbons (PAHs) in human milk from Italian women: influence of cigarette smoking and residential area. Chemosphere, 2007. 67(7): p. 1265-1274.
  • [35] Sepetdjian, E., N. Saliba, and A. Shihadeh, Carcinogenic PAH in waterpipe charcoal products. Food and Chemical Toxicology, 2010. 48(11): p. 3242-3245.
  • [36] Hsu, W.T., et al., PAH emissions from coal combustion and waste incineration. Journal of hazardous materials, 2016. 318: p. 32-40.
  • [37] Chen, Y., et al., Generation and distribution of PAHs in the process of medical waste incineration. Waste management, 2013. 33(5): p. 1165-1173.
  • [38] Dyke, P.H., C. Foan, and H. Fiedler, PCB and PAH releases from power stations and waste incineration processes in the UK. Chemosphere, 2003. 50(4): p. 469-480.
  • [39] Ferraz, M.A., J.B. Cardoso, and S.R. Pontes, Concentration of atmospheric pollutants in the gaseous emissions of medical waste incinerators. Journal of the Air & Waste Management Association, 2000. 50(1): p. 131-136.
  • [40] Jangsawang, W., B. Fungtammasan, and S. Kerdsuwan, Effects of operating parameters on the combustion of medical waste in a controlled air incinerator. Energy Conversion and Management, 2005. 46(20): p. 3137-3149.
  • [41] Xie, R., et al., Emissions investigation for a novel medical waste incinerator. Journal of hazardous materials, 2009. 166(1): p. 365-371.
  • [42] Sakai, E., et al., Hydration of fly ash cement. Cement and Concrete Research, 2005. 35(6): p. 1135-1140.
  • [43] Mangialardi, T., et al., Optimization of the solidification/stabilization process of MSW fly ash in cementitious matrices. Journal of hazardous materials, 1999. 70(1-2): p. 53-70.

Show References

Citation type: APAEmre Dalkılıç, Şükrü Dursun. (2020). Overview of Medical Waste Incineration Systems. International Journal of Environmental Pollution and Environmental Modelling, 3 ( 3 ) , 112-120. http://ijepem.com/volume-3/issue-3/article-3/
Citation: BibTex@article{2020, title={Overview of Medical Waste Incineration Systems}, volume={3}, number={3}, publisher={International Journal of Environmental Pollution and Environmental Modelling}, author={Emre Dalkılıç, Şükrü Dursun}, year={2020}, pages={112-120} }
Citation type: MLAEmre Dalkılıç, Şükrü Dursun. Overview of Medical Waste Incineration Systems. no. 3 International Journal of Environmental Pollution and Environmental Modelling, (2020), pp. 112-120.