[1] Fraceto, L. F., Grillo, R., Gerson A deMedeiros, Scognamiglio, V., Rea, G. and Bartolucci, C. (2016). Nanotechnology in Agriculture: Which Innovation Potential Does It Have?. Frontiers in Environmental Science, 4(20)1-5.
[2] Rai, M. and Duran, N. (2011). Metal Nanoparticles in Microbiology. Springer-Verlag Berlin Heidelberg.
[3] Huang, J., Chen, C., He, N., Hong, J., Lu, Y., Qingbiao, L., Shao, W., Sun. D., Wang, X.H., Wang, Y., Yiang, X. (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology, 18(10):105–116.
[4] Mishra, S., Keswani, C., Abhilash, P. C., Fraceto, L. F. and Singh, H. B. (2017). Integrated Approach of Agri-nanotechnology: Challenges and Future Trends. 8 (471) 1-12.
[5] Prasad, R., Kumar, M. and Kumar, V. (2017). Nanotechnology: An Agricultural Paradigm. Pub. By Springer Nature Singapore.
[6] Nagajyothi, P.C., Lee, K.D. (2011). Synthesis of Plant-Mediated Silver Nanoparticles Using Dioscorea batatas Rhizome Extract and Evaluation of Their Antimicrobial Activities. Journal of Nanomaterials, 2011: Article ID 573429 (7 pp).
[7] Duhan, J. S., Kumar, R., Kumar, N., Kaur, P., Nehra, K. and Duhan, S. (2017). Nanotechnology: The new perspective in precision agriculture. Biotechnology Reports, 15: 11–23.
[8] Thakkar, K.N., Mhatre, S.S., Parikh, R.Y. (2010) Biological synthesis of metallic nanoparticles. Nanomedicine, 6(2):257–262.
[9] Cheng, H. N., Doemeny, L., Geraci, C. L. and Schmidt, D. G. (2016). Nanotechnology: Delivering on the Promise Volume II. ACS Symposium Series; American Chemical Society: Washington, DC.
[10] Cao, J., Hu, X.; Jiang, D. (2009). Synthesis of gold nanoparticles using halloysites. Journal of Surface Science and Nanotechnology, 7:813–815.
[11] Balasooriya, E. R., Jayasinghe, C. D., Jayawardena, U. O., Ruwanthika, R. W. D., de Silva, R. M. and Udagama, P. V. (2017). Honey Mediated Green Synthesis of Nanoparticles: New Era of Safe Nanotechnology. Journal of Nanomaterials, vol. 2017, Article ID 5919836, 1-10.
[12] Bansal, V., Bharde, A., Ramanathan, R., Bhargava, S. K. (2012). Inorganic materials using ‘unusual’ microorganisms. Advances in Colloid and Interface Science, 179–182: 150–168.
[13] Fayaz, A.M., Balaji, K., Girilal, M., Yadav, R., Kalaichelvan, P.T., Venketesan, R. (2010). Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine: Nanotechnology, Biology, and Medicine, 6 (1): 103–109
[14] Gericke, M. and Pinches, A. (2006) Biological synthesis of metal nanoparticles. Hydrometallurgy, 83 (1–4):132–140.
[15] Riddin, T.L., Gericke, M., Whiteley, C.G. (2006). Analysis of the inter- and extracellular formation of platinum nanoparticles by Fusarium oxysporum f sp. lycopersici using response surface methodology. Nanotechnology, 17(14):3482–3489.
[16] Rai, M., Yadav, A., Bridge, P., Gade, A. (2009). Myconanotechnology: a new and emerging science. In: Rai MK, Bridge PD (eds.) Applied mycology, vol. 14. CAB International, New York, pp 258–267.
[17] Kumar, S., Amutha, R., Arumugam, P., Berchmans, S. (2011). Synthesis of gold nanoparticles: an ecofriendly approach using Hansenula anomala. ACS Applied Materials and Interfaces, 3(5): 1418–1425.
[18] Ramezani, N., Ehsanfar, Z., Shamsa, F., Amin, G., Shahverdi, H.R., Monsef- Esfahani, H.R., Shamsaie, A., Dolatabadi- Bazaz, R., Shahverdi, A.R. (2008). Screening of medicinal plant methanol extracts for the synthesis of gold nanoparticles by their reducing potential. Zeitschrift für Naturforschung B, 63(7):903–908.
[19] Shakibaie, M., Khorramizadeh, M.R., Faramarzi, M.A., Sabzevari, O., Shahverdi, A.R. (2010). Biosynthesis and recovery of selenium nanoparticles and the effects on matrix metalloproteinase- 2 expression. Biotechnol. Appl. Biochem. 56(1):7–15.
[20] Moghaddam, A. B., Moniri, M., Azizi, S., Rahim, R. A., Ariff, A. B., Saad, W. Z., Namvar, F., Navaderi, M. and Mohamad, R. (2017). Biosynthesis of ZnO Nanoparticles by a New Pichia kudriavzevii Yeast Strain and Evaluation of Their Antimicrobial and Antioxidant Activities. Molecules, 22 (872) 1-18.
[21] Hui, Y.H. (2006). Handbook of food science, technology, and engineering. vol. 4, CRC Press, Taylor & Francis Group.
[22] ImranDin, M. I. and Rehan, R. (2017). Synthesis, Characterization, and Applications of Copper Nanoparticles. Journal of Analytical Letters, 50 (1) 50-62.
[23] He, S., Guo, Z., Zhang, Y., Zhang, S., Wang, J., Gu, N. (2007). Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Materials Letter, 61 (18):3984–3987.
[24] Tiwari, M., Sharma, N. C., Fleischmann, P., Burbage, J., Venkatachalam, P. and Sahi, S. V. (2017). Nanotitania Exposure Causes Alterations in Physiological, Nutritional and Stress Responses in Tomato (Solanum lycopersicum). Frontiers in Plant Science, 8(633) 1-12.
[25] Ayangbenro, A. S. and Babalola, O. O. (2017). A New Strategy for Heavy Metal Polluted Environments: A Review of Microbial Biosorbents. Int. J. Environ. Res. Public Health, 14 (94) 1-16.
[26] Brock, D. A., Douglas, T.E., Queller, D.C., Strassmann, J.E. (2011). Primitive agriculture in a social amoeba. Nature 469: 393-396.
[27] Qu, L., Xia, S., Bian, C., Sun, J., Han, J. (2009). A micro-potentiometric hemoglobin immunosensor based on electropolymerized polypyrrole-gold nanoparticles composite. Biosensors & Bioelectron, 24(12):3419–3424.
[28] Aragay, G., Pino, F., Merkoci, A. (2012). Nanomaterials for sensing and destroying pesticides. Chemical Reviews, 112: 5317–5338.
[29] Vidhyalakshmi, R., Bhakyaraj, R., Subhasree, R.S. (2009). Encapsulation the future of probiotics-A Review. Adv. Biol. Res. 3(3-4):96-103.
[30] Young, K.J. (2009) Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis. 93(10):1037-1043.
[31] Kim, S.W., Jung, J.H., Lamsal, K., Kim, Y.S., Min, J.S., Lee, Y.S. (2012). Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology, 40(1):53-58.
[32] M.A.Shah, A. Towkeer. (2010). Principles of Nanoscience and Nanotechnology, Naroosa Publishing House, New Delhi.
[33] Prasad, R., Kumar, V. and Prasad, K. S.(2014) Nanotechnology in sustainable agriculture: Present concerns and future aspects. African Journal of Biotechnology, 13(6): 705-713.
[34] Wright, F. A. P. (2017). Potential risks and benefits of nanotechnology: perceptions of risk in sunscreens. MJA, 204 (10) 396-371.
[35] Stone, V., Pozzi-Mucelli, S., Tran, L., Aschberger, K., Sabella5, Ulla Vogel, S., Poland, C., Balharry, D., Fernandes, T., Gottardo, S., Hankin, S., Hartl, M. G. J., Hartmann, N., Hristozov, D., Hund-Rinke, K., Johnston, H., Marcomini, A., Panzer, O., Roncato, D., Anne –Saber, T., Wallin, H. andScott-Fordsmand, J. J. (2014) ITS-NANO - Prioritising nanosafety research to develop a stakeholder driven intelligent testing strategy. Particle and Fibre Toxicology, 11(9) 1-11.
[36] Sadeghi, R., Rodriguez, R. J., Yao, Y. and Kokini, J. L. (2017). Advances in Nanotechnology as they Pertain to Food and Agriculture: Benefits and Risks. The Annual Review of Food Science and Technology, 8(21): 1–26.
[37] Sharma, V.K, Yngard, R.A., Lin, Y. (2009). Silver nanoparticles: green synthesis and their antimicrobial activities. Adv. in Colloid and Interface Sci. 145(1-2):83–96.