[1] . Dehghani, M. H., Kamalian, S., Shayeghi, M., Yousefi, M., Heidarinejad, Z., Agarwal, S., & Gupta, V. K., 2019, High-performance removal of diazinon pesticide from water using multi-walled carbon nanotubes. Microchemical Journal, Vol. 145, 486–491.
[2] . Saeidi, M., Naeimi, A., & Komeili, M., 2016, Magnetite nanoparticles coated with methoxy polyethylene glycol as an efficient adsorbent of diazinon pesticide from water. Vol. 1, 25–31.
[3] . Marien, C. B. D., Le Pivert, M., Azaïs, A., M’Bra, I. C., Drogui, P., Dirany, A., & Robert, D., 2018., Kinetics and mechanism of Paraquat’s degradation: UV-C photolysis vs UV-C photocatalysis with TiO2/SiC foams. Journal of Hazardous Materials, Vol. 370, 164–171.
[4] . Cai, J., Zhou, M., Liu, Y., Savall, A., & Groenen Serrano, K., 2018, Indirect electrochemical oxidation of 2,4-dichlorophenoxyacetic acid using electrochemically-generated persulfate. Vol. 204, 163-169.
[5] . Lee, H., Hoon, S., Park, Y., Kim, S., Seo, S., Jin, S., & Jung, S., 2014, Photocatalytic reactions of 2 , 4-dichlorophenoxyacetic acid using a microwave-assisted photocatalysis system. CHEMICAL ENGINEERING JOURNAL.Vol. 278, 259-264.
[6] . Islam, F., Wang, J., Farooq, M. A., Khan, M. S. S., & Xu, L., 2017, Potential impact of the herbicide 2 , 4-dichlorophenoxyacetic acid on human and ecosystems. Vol. 111, 332-351.
[7] . Chair, K., Bedoui, A., Bensalah, N., Fernández-Morales, F. J., Sáez, C., Cañizares, P., & Rodrigo, M. A., 2017, Combining bioadsorption and photoelectrochemical oxidation for the treatment of soil-washing effluents polluted with herbicide 2,4-D. Journal of Chemical Technology and Biotechnology, Vol. 92, 83–89.
[8] . Chen, H., Zhang, Z., Feng, M., Liu, W., Wang, W., Yang, Q., & Hu, Y., 2017, Degradation of 2,4-dichlorophenoxyacetic acid in water by persulfate activated with FeS (mackinawite). Chemical Engineering Journal, Vol. 313, 498–507.
[9] . Qiu, P., Thokchom, B., Choi, J., Cui, M., Kim, H.D., Han, Z., Kim, D., 2016, Mesoporous TiO2 encapsulating a visible-light responsive upconversion agent for enhanced sonocatalytic degradation of bisphenol-A, RSC Adv. Vol, 44, 37434–37442.
[10] . Chave, T., Navarro, N. M., Pochon, P., Perkas, N., Gedanken, A., & Nikitenko, S. I., 2015, Sonocatalytic degradation of oxalic acid in the presence of oxygenand Pt/TiO2. Catalysis Today, Vol. 241, 55–62.
[11] . Cheng, Z., Quan, X., Xiong, Y., Yang, L., & Huang, Y., 2012, Synergistic degradation of methyl orange in an ultrasound intensified photocatalytic reactor. Ultrasonics Sonochemistry, Vol. 19, 1027–1032.
[12] . Verma, A., Kaur, H., & Dixit, D., 2013, Photocatalytic, sonolytic and sonophotocatalytic degradation of 4-chloro-2-nitro phenol. Archives of Environmental Protection, 39(2), 17–28.
[13] . Wang, C., Zhao, J., Wang, X., Mai, B., Sheng, G., Peng, P., & Fu, J., 2002, Preparation , characterization and photocatalytic activity of nano-sized ZnO/SnO2 coupled photocatalysts. Applied Catalysis B: Environmental, 39(3), 269–279.
[14] . Chakma, S., & Moholkar, V. S., 2015, Investigation in mechanistic issues of sonocatalysis and sonophotocatalysis using pure and doped photocatalysts. Ultrasonics Sonochemistry, Vol. 22, 287–299.
[15] . Dinesh, G.K., Anandan, S., Sivasankar, T., 2015, Sonophotocatalytic treatment of Bismarck Brown G dye and real textile effluent using synthesized novel Fe (0)-doped TiO2 catalyst, RSC Adv.Vol. 5,10440–10451.
[16] . Benito, A., Penadés, A., Lliberia, J. L., & Gonzalez-Olmos, R., 2017, Degradation pathways of aniline in aqueous solutions during electro-oxidation with BDD electrodes and UV/H2O2 treatment. Chemosphere,Vol. 166, 230–237.
[17] . Mahamuni, N. N., & Adewuyi, Y. G., 2009, Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: A review with emphasis on cost estimation. Ultrasonics - Sonochemistry,Vol. 17, 990–1003.
[18] . Khataee, S., Saadi, Safarpour M., Joo S.W., 2015, Sonocatalytic performance of Er- doped ZnO for degradation of a textile dye, Ultrason. Sonochem.Vol. 27, 379–388.
[19] . Stylidi, M., Kondarides, D. I., & Verykios, X. E., 2004, Visible light-induced photocatalytic degradation of Acid Orange 7 in aqueous TiO2 suspensions. Applied Catalysis B: Environmental, 47(3), 189–201.
[20] . Gorji, A. H., Simchi, A., & Kokabi, A. H., 2015, Development of composite silver/nickel nanopastes for low temperature Joining of yttria-stabilized zirconia to stainless steels. Ceramics International, Vol. 41, 1815–1822.
[21] . Ranjit, K.; Roy, A. Primer on the Taguchi Method, 1st ed., Society of Manufacturing Engineers; 1990; pp. 146
[22] . Aber, S., Khataee, A., & Sheydaei, M., 2009, Optimization of activated carbon fiber preparation from Kenaf using K2HPO4 as chemical activator for adsorption of phenolic compounds. Bioresource Technology,Vol. 100, 6586–6591.
[23] . Narenderan, S. T., Meyyanathan, S. N., & Reddy Karri, V. V. S., 2019, Experimental design in pesticide extraction methods: A review. In Food Chemistry.
[24] . Sohrabi, M. R., Khavaran, A., Shariati, S., & Shariati, S., 2017, Removal of Carmoisine edible dye by Fenton and photo Fenton processes using Taguchi orthogonal array design. Arabian Journal of Chemistry, 10, 3523–3531.
[25] . Taguchi, G. Introduction to quality engineering: designing quality into products and processes, 7nd ed.; The organization; California University; 2011; pp. 47
[26] . Mohapatra, S., Jyotsna, S., & Thatoi, H., 2016, Physicochemical characterization , modelling and optimization of ultrasono-assisted acid pretreatment of two Pennisetum sp . using Taguchi and artificial neural networking for enhanced deligni fi cation. Journal of Environmental Management,Vol. 187,537-549 .
[27] . Aliofkhazraee, M., & Sabour Rouhaghdam, A., 2008, Pulsed nanocrystalline plasma electrolytic carburising for corrosion protection of a γ-TiAl alloy. Part 2. Constant frequency and duty cycle. Journal of Alloys and Compounds,Vol. 462, 421–427.
[28] . Sreeja, P. H., & Sosamony, K. J., 2016, A Comparative Study of Homogeneous and Heterogeneous Photo-fenton Process for Textile Wastewater Treatment. Procedia Technology, 24, 217–223.
[29] . Ozdamar, A.; Paket Programlar ile İstatistiksel Veri Analizi, 10nd ed.; Sözkesen Matbaacılık; Ankara; 2015; pp. 299-300
[30] . Piscopo, A., Robert, D., & Weber, J., 2001, Influence of pH and chloride anion on the photocatalytic degradation of organic compounds: part I. Effect on the benzamide and para-hydroxybenzoic acid in TiO2 aqueous solution. Applied Catalysis B: Environmental, 35, 117–124. Retrieved from
[31] . Prieto, O., Fermoso, J., Nuñez, Y., Del Valle, J. L., & Irusta, R. (2005). Decolouration of textile dyes in wastewaters by photocatalysis with TiO2. Solar Energy, 79(4), 376–383.
[32] . Bazrafshan, E., Mostafapour, F. K., Faridi, H., Farzadkia, M., & Sohrabi, A., 2013, Removal of 2 , 4-Dichlorophenoxyacetic Acid ( 2 , 4-D ) From Aqueous Environ- ments Using Single-Walled Carbon Nanotubes. Vol. 2, 39–46.
[33] . Cai, J., Zhou, M., Liu, Y., Savall, A., Groenen Serrano, K. 2018, Indirect electrochemical oxidation of 2,4-dichlorophenoxyacetic acid using electrochemically-generated persulfate. Chemosphere Vol. 204, 163-169
[34] . Yu, C. H., Wu, C. H., Ho, T. H., & Andy Hong, P. K., 2010, Decolorization of C.I. Reactive Black 5 in UV/TiO2 , UV/oxidant and UV/TiO2 /oxidant systems: A comparative study. Chemical Engineering Journal, 158(3), 578–583.
[35] . Bouafıa-Cherguı, S., Zemmourı, H., Chabanı, M., & Bensmaılı, A., 2016, TiO2-photocatalyzed degradation of tetracycline: kinetic study, adsorption isotherms, mineralization and toxicity reduction. Desalination and Water Treatment,Vol. 57, 16670–16677.
[36] . Dogdu Okcu, G., Eser Okten, H., Yalcuk, A., 2019, Heterogeneous photocatalytic degradation and mineralization of 2,4-dichlorophenoxy acetic acid (2,4-D): its performance, kinetics, and economic analysis. Desalin. Water Treat. Vol. 137, 312–327
[37] . Rong, G.Z., 2016, Sonocatalytic degradation of organic dye in the presence of TiO2 particles, J. Econ. Financ. Vol. 3, 56.
[38] . Bian, X., Chen, J., & Ji, R., 2013, Degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) by novel photocatalytic material of tourmaline-coated TiO2 nanoparticles: Kinetic study and model. Materials,Vol. 6, 1530–1542.
[39] . Musterman, M., Placeholder, P., Tio, F., & Musterman, M., 2018, Sonocatalytic degradation of Different methyl orange in aqueous solution using nanoparticles under mechanical agitation What Is So Different About Was ist so anders am Neuroenhancement Vol. 2, 122–135.