[1] Kaur, J., Pathak, T., Singh, A., & Kumar, K. (2017). Application of Nanotechnology in the Environment Biotechnology. In Advances in Environmental Biotechnology (pp. 155-165). Springer, Singapore.
[2] Qu, X., Alvarez, P. J., & Li, Q. (2013). Applications of nanotechnology in water and wastewater treatment. Water research, 47(12), 3931-3946.
[3] Anis, M., AlTaher, G., Sarhan, W., & Elsemary, M. (2017). Environment and Remediation Applications. In Nanovate (pp. 87-112). Springer, Cham.
[4] Kagan, C. R., Fernandez, L. E., Gogotsi, Y., Hammond, P. T., Hersam, M. C., Nel, A. E., ... & Weiss, P. S. (2016). Nano Day: celebrating the next decade of nanoscience and nanotechnology.
[5] Manahan, S. (2017). Environmental chemistry. CRC press.
[6] Alrumman, S. A., El-kott, A. F., & Keshk, S. M. (2016). Water pollution: source & treatment. American Journal of Environmental Engineering, 6(3), 88-98.
[7] Mahadik, S. (2017). Applications of Nanotechnology in Water and Waste Water Treatment. AADYA-Journal of Management and Technology (JMT), 7, 187-191.
[8] Gunti, S., Kumar, A., & Ram, M. K. (2018). Nanostructured photocatalysis in the visible spectrum for the decontamination of air and water. International Materials Reviews, 63(4), 257-282.
[9] Walsh, S. E., & Denyer, S. P. (2012). Filtration sterilization (pp. 343-370). Wiley‐Blackwell.
[10] Baruah, S., Khan, M. N., & Dutta, J. (2016). Perspectives and applications of nanotechnology in water treatment. Environmental chemistry letters, 14(1), 1-14.
[11] Levy, E. (2018). U.S. Patent Application No. 15/839,365.
[12] Onoyinka, A. A., & Titilayo, H. A. (2017). Accumulation of Lead, Cadmium and Iron in Topsoil of Ori-Ile Battery Waste Dumpsite and Surrounding Gradient Point Areas at Olodo, Ibadan, Nigeria. International Journal of Mineral Processing and Extractive Metallurgy, 2(5), 68.
[13] Sharma, R., & Kumar, D. (2018). Nanoadsorbents: An Approach Towards Wastewater Treatment. Nanotechnology for Sustainable Water Resources, 371-405.
[14] Okereke, J. N., Ogidi, O. I., & Obasi, K. O. (2016). Environmental and health impact of industrial wastewater effluents in Nigeria-A Review. Int. J. Adv. Res. Biol. Sci, 3(6), 55-67.
[15] Voyiatzis, G. A., Kouravelou, K., Karachalios, T., Beobide, A. S., & Anastasopoulos, J. A. (2017). Study of carbon nanotubes’ embedment into porous polymeric membranes for wastewater treatment. In Application of Nanotechnology in Membranes for Water Treatment (pp. 81-110). CRC Press.
[16] Anastasopoulos, J. A., Beobide, A. S., Karachalios, T., Kouravelou, K., & Voyiatzis, G. A. (2017). Study of carbon nanotubes’ embedment into porous polymeric membranes for wastewater treatment. In Application of Nanotechnology in Membranes for Water Treatment (pp. 141-170). CRC Press.
[17] Vilakati, G. D. (2015). Fabrication and characterisation of highly water permeable ultrafiltration membranes as supports for forward osmosis thin film composite membranes (Doctoral dissertation, University of Johannesburg).
[18] Tijing, L. D., Woo, Y. C., Choi, J. S., Lee, S., Kim, S. H., & Shon, H. K. (2015). Fouling and its control in membrane distillation—a review. Journal of Membrane Science, 475, 215-244
[19] Mohammad, A. W., Teow, Y. H., Ang, W. L., Chung, Y. T., Oatley-Radcliffe, D. L., & Hilal, N. (2015). Nanofiltration membranes review: Recent advances and future prospects. Desalination, 356, 226-254.
[20] Choudhury, R. R., Gohil, J. M., Mohanty, S., & Nayak, S. K. (2018). Antifouling, fouling release and antimicrobial materials for surface modification of reverse osmosis and nanofiltration membranes. Journal of Materials Chemistry A, 6(2), 313-333.
[21] Jeevanandam, J., Barhoum, A., Chan, Y. S., Dufresne, A., & Danquah, M. K. (2018). Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein journal of nanotechnology, 9, 1050.
[22] Ying, Y., Liu, D., Zhang, W., Ma, J., Huang, H., Yang, Q., & Zhong, C. (2017). High-Flux Graphene Oxide Membranes Intercalated by Metal–Organic Framework with Highly Selective Separation of Aqueous Organic Solution. ACS applied materials & interfaces, 9(2), 1710-1718.
[23] Bhat, A. H., Rehman, W. U., Khan, I. U., Khan, I., Ahmad, S., Ayoub, M., & Usmani, M. A. (2018). Nanocomposite membrane for environmental remediation. In Polymer-based Nanocomposites for Energy and Environmental Applications (pp. 407-440).
[24] Nakata, K., & Fujishima, A. (2012). TiO2 photocatalysis: Design and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 13(3), 169-189.
[25] Güzel, F., Sayğılı, H., Sayğılı, G. A., & Koyuncu, F. (2015). New low-cost nanoporous carbonaceous adsorbent developed from carob (Ceratonia siliqua) processing industry waste for the adsorption of anionic textile dye: characterization, equilibrium and kinetic modeling. Journal of Molecular Liquids, 206, 244-255.
[26] Liang, R., Hu, A., Hatat-Fraile, M., & Zhou, N. (2014). Fundamentals on Adsorption, Membrane Filtration, and Advanced Oxidation Processes for
[27] Roy, K., & Ghosh, C. K. (2017). Environmental and Biological Applications of Nanoparticles. Nanotechnology: Synthesis to Applications.
[28] Ramamoorthy, V., Kannan, K., & Thiripuranthagan, S. (2018). Photocatalytic Degradation of Textile Reactive Dyes—A Comparative Study Using Nano Silver Decorated Titania-Silica Composite Photocatalysts. Journal of Nanoscience and Nanotechnology, 18(4), 2921-2930.
[29] Roy, K., Sarkar, C. K., & Ghosh, C. K. (2015). Rapid colorimetric detection of Hg2+ ion by green silver nanoparticles synthesized using Dahlia pinnata leaf extract. Green Processing and Synthesis, 4(6), 455-461.
[30] Aswin Kumar, I., & Viswanathan, N. (2018). Development and Reuse of Amine-Grafted Chitosan Hybrid Beads in the Retention of Nitrate and Phosphate. Journal of Chemical & Engineering Data.
[31] Lofrano, G., Carotenuto, M., Libralato, G., Domingos, R. F., Markus, A., Dini, L., & Chattopadhyaya, M. C. (2016). Polymer functionalized nanocomposites for metals removal from water and wastewater: an overview. Water research, 92, 22-37.
[32] Sharma, R., & Kumar, D. (2018). Nanocomposites: An Approach Towards Pollution Control. In Nanocomposites for Pollution Control (pp. 3-46). Pan Stanford.
[33] Ray, P. Z., & Shipley, H. J. (2015). Inorganic nano-adsorbents for the removal of heavy metals and arsenic: a review. RSC Advances, 5(38), 29885-29907.
[34] Percival, R. V., Schroeder, C. H., Miller, A. S., & Leape, J. P. (2017). Environmental regulation: Law, science, and policy. Wolters Kluwer Law & Business.
[35] Liu, K., Wang, S., Wu, Q., Wang, L., Ma, Q., Zhang, L., ... & Hao, J. (2018). A Highly-resolved Mercury Emission Inventory of Chinese Coal-fired Power Plants. Environmental science & technology.
[36] Dhanavel, S., Manivannan, N., Mathivanan, N., Gupta, V. K., Narayanan, V., & Stephen, A. (2018). Preparation and characterization of cross-linked chitosan/palladium nanocomposites for catalytic and antibacterial activity. Journal of Molecular Liquids, 257, 32-41.