Volume 1 Issue 1 Article 1

METAL BIOACCUMULATION/TOXICITY TEST FOR METAL INDUSTRY WASTEWATERS

Writer(s): Bayram Çevi̇k 1, Mehtap Şahi̇n Çevi̇k 2,

Metal industry wastewaters include different types of heavy metals with respect to the metal production processes and products. There are several methods used for metal production industry such as refining and smelting operations. Both may produce air emissions like SO2 and particulate matter, wastewater originating from floatation and leachate, and other wastes like sludge and slag. Heavy metals of metal industry wastewaters are nickel, brass, chrome, gold, cadmium, copper, brass, and silver. Most of them may give severe damage to human and environment. For example, chrome ion leads to lung cancer, stomach ulcer, kidney and liver function disorders and death on human. Thus, heavy metal containing wastewaters could be very dangerous. Besides, plant species which have capability of accumulate heavy metals can be an option to bioaccumulate metal industry wastewaters while plant species which are sensitive to heavy metals can be used as a plant for phytotoxicity tests. In this study metal industry wastewaters were analysed in order to determine plant species whether they are sensitive or tolerant to heavy metals. During analysis phytotoxicity tests were conducted with different plant species.



Keyword(s): , Citrus, genetic engineering, genetic transformation, tissue culture, resistance to abiotic and biotic stresses,

  • [1] Almeida, W.A.B, Mourão-Filho, F.A.A., Pino, L.E., Boscariol, R.L., Rodríguez A.P.M., Mendes, B.M.J. 2003. Genetic transformation and plant recovery from mature tissues of Citrus sinensis L. Osbeck. Plant Science 164: 203–211.
  • [2] Bond, J.E. and Roose, M.L. 1998. Agrobacterium-mediated transformation of the commercially important citrus cultivar Washington navel orange. Plant Cell Rep. 18: 229–234.
  • [3] Boscariol R. L., Almeida, W.A.B., Derbyshire, M.T.V.C., Mourao-Filho, F.A.A. and Mendes, B.M.J. 2003. The use of the PMI/mannose selection system to recover transgenic sweet orange plants (Citrus sinensis L. Osbeck). Plant Cell Rep. 22:122–128.
  • [4] Ceccardi, T.L., Barthe, G.A. and Derrick, K.S. 1998. A novel protein associated with citrus blight has sequence similarities to expansin. Plant Mol. Biol. 38: 775–783.
  • [5] Cervera, M., Ortega C., Navarro, A., Navarro, L. and Pena, L. 2000. Generation of transgenic citrus plants with the tolerance-tosalinity gene HAL2 from yeast, J. Hort. Sci. Biotech. 75 26–30.
  • [6] Cervera, M., Pina, J.A., Juarez, J., Navarro, L. and Pena, L. 1998. Agrobacterium-mediated transformation of citrange: factors affecting transformation and regeneration. Plant Cell Rep. 18: 271–278.
  • [7] Cevik, B., Lee, R.F., Moore, G.A. and Niblett, C.L. 2000. Genetic Transformation of Citrus paradisi with the RNA-Dependent RNA Polymerase Gene of Citrus Tristeza Closterovirus. In: Proceedings of the 9th International Citrus Congress. (Ed.:L. G. Albrigo),Vol. 1, CREC-UF/IFAS, Lake Alfred, pp. 205.
  • [8] Cevik, B. 2001. Characterization of the RNA-dependent RNA polymerase gene of citrus tristeza closterovirus. Ph.D Thesis. University of Florida, Gainesville, Florida, 138 pp.
  • [9] Cevik, B., Lee, R.F. and Niblett, C.L. 2006. Genetic Transformation of Citrus paradisi with antisense and untranslatable constructs of the RNA-Dependent RNA Polymerase Gene of Citrus Tristeza Closterovirus. T. J. Agric. Forest. In press.
  • [10] Champ, K. 2004. Isolation and characterization of components of low temperature-induced signal transduction pathways in Poncirus trifoliata (L.) Raf. and Citrus paradisi Macf. . Ph.D Thesis. University of Florida, Gainesville, Florida,125 pp.
  • [11] Chávez-Vela, N.A., Lucía, I., Chávez-Ortiz, E. And Pérez-Molphe B. 2003. Genetic transformatıon of sour orange using Agrobacterium rhizogenes. Agrociencia. 37: 629-639.
  • [12] Chiba, H., Uehara, M., Wu, J., Wang, X., Masuyama, R., Suzuki, K., Kanazawa, K. and Ishimi, Y. 2003. Hesperidin, a citrus flavonoid, inhibits bone loss and decreases serum and hepatic lipids in ovaryectomized mice. J. Nutr. 133:1892–1897.
  • [13] Costa, M.G.C., Otoni, W.C. and Moore, G.A. 2002. An evaluation of factors affecting the efficiency of Agrobacteriummediated transformation of Citrus paradisi (Macf.) and production of transgenic plants containing carotenoid biosynthetic genes. Plant Cell Rep. 21: 365–373.
  • [14] Derrick, K.S., Lee, R.F., Brlansky, R.H., Timmer, L.W., Hewitt, B.G. and Barthe, G.A. 1990. Proteins associated with citrus blight. Plant Dis. 74:168–170. Derrick, K.S. and Timmer, L.W. 2000. Citrus blight and other diseases of recalcitrant etiology. Annu. Rev. Phytopathol. 38:181–201.
  • [15] Dominguez, A., Guerri, J., Cambra, M., Navarro, L., Moreno, P. and Peña L. 2000. Efficient production of citrus transgenic plants expressing the coat protein gene of Citrus Tristeza Virus. Plant Cell Rep. 19: 427–433.
  • [16] Febres, V.J., Niblett, C.L., Lee, R.F. and Moore, G.A. 2003. Characterization of grapefruit plants (Citrus paradisi Macf.) transformed with citrus tristeza closterovirus genes. Plant Cell Rep. 21:421–428.
  • [17] Frydman, A., Weisshaus, O., Bar-Peled, M., Huhman, D.V., Sumner, L.W., Marin, FR., Lewinsohn, E., Fluhr, R., Gressel, J. and Eyal, Y. 2004. Citrus fruit bitter flavors: Isolation and functional characterization of the gene Cm1,2RhaT encoding a 1,2 rhamnosyltransferase, a key enzyme in the biosynthesis of the bitter flavonoids of citrus. The Plant Journal 40: 88–100.
  • [18] Gmitter, F.G.J., Grosser, J.W., and Moore, G.A. 1992 Citrus. (ed.): Hammerschlag, F.A., and Litz, R.E. Biotechnology in agriculture, vol 8. CAB International. pp 335-336, Wallingford, Oxford.
  • [19] Ghorbel, R., Dominguez, A., Navarro, L. and Peña, L. 2000. High efficiency genetic transformation of sour orange Citrus aurantium L. and production of transgenic trees containing the coat protein gene of Citrus Tristeza Virus. Tree Physiol. 20: 1183–1189.
  • [20] Ghorbel, R., Lopez, C., Moreno, P., Navarro, L., Flores, R. and Peña L. 2001. Transgenic citrus plants expressing the Citrus Tristeza Virus p23 protein exhibit viral-like symptoms. Mol. Plant Pathol. 2: 27–36.
  • [21] Gross, J. 1987. Carotenoids: Pigments in Fruits. Academic Press, London.
  • [22] Gutierrez M.A., Luth, E.D. and Moore. G.A. 1997. Factors affecting Agrobacterium-mediated transformation in citrus and production of sour orange (Citrus aurantium L.) plants expressing the coat protein gene of citrus tristeza virus. Plant Cell Rep. 16745–753
  • [23] Harborne, J. Plant Flavonoids in Biology and Medicine, Biochemical, Pharmacological,and Structure-Activity Alan R. Liss. pp. 163–175, New York.
  • [24] Hidaka, T., Omura, M., Ugaki, M., Tomiyama, M., Kato, A., Ohshima, M. and Motoyoshi, F., 1990. Agrobacteriummediated transformation and regeneration of Citrus from suspension cells. Jpn. J. Breed. 40, 199–207.
  • [25] Hidaka, T. and Omura, M. 1993. Transformation of citrus protoplasts by electroporation. J. Jpn. Soc. Hortic. Sci.62:371–376.
  • [26] Horowitz, R.M. 1986. Taste effects of flavonoids. (ed.): Cody, V., Middleton, E. Jr. and Kaneyoshi, J., Kobayashi, S. Nakamura, Y., Shigemoto, N. and Doi, Y. 1994. A simple and efficient gene transfer system of trifoliate orange (Poncirus trifoliata (L.) Raf.), Plant Cell Rep. 13: 541–545.
  • [27] Kato, M., Ikoma, Y., Matsumoto, H., Sugiura, M., Hyodo, H. and Masamichi, Y. 2004. Accumulation of Carotenoids and Expression of Carotenoid Biosynthetic Genes during Maturation in Citrus Fruit. Plant Physiol. 134: 824–837.
  • [28] Kayım, M. 1997. Genetic transformation of Kutdiken lemon [Citrus limon (L.) Burm. f] variety and regeneration of transgenic plants. PhD thesis, University of Cukurova, Adana.
  • [29] Kayım, M., Grosser, J.W., Barthe, G.A. and Derrick, K. S. 2003. Shoot regeneration from epicotyl segments of rough lemon (Citrus jambhiri Lush.). In: Proc. Int. Soc. Citrus. Int. Congr. 2000. Int. Soc. Citriculture. Orlando, Fla., p 212.
  • [30] Kayım, M., Ceccardi ,T.L., Berretta, M.J.G., Barthe, G.A. and Derrick, K.S. 2004. Introduction of a citrus blight-associated gene into Carrizo citrange [Citrus sinensis (L.) Osbc. Poncirus trifoliata (L.) Raf.] by Agrobacterium-mediated transformation Plant Cell Rep. 23:377–385.
  • [31] Kayım,M. and Koç, N.K. 2005. Improved transformation efficiency in citrus by plasmolysis treatment. Journal of Plant Biochemistry and Biotechnology, 14 (1), 15-20.
  • [32] Kim, H.K., Jeon, W.K. and Ko, B.S. 2001. Flavanone glycosides from Citrus junos and their anti-influenza virus activity. Planta Med. 67:548–549.
  • [33] Kobayashi, S. and Uchimiya, H. 1989. Expression and integration of a foreign gene in orange (Citrus sinensis Osb.) protoplasts by direct DNA transfer. Jpn. J. Genet 64:91–97.,
  • [34] Koca, U. 2005. Manipulation of the flavanoid pathway in citrus. Ph.D Thesis. University of Florida, Gainesville, Florida, 110 pp.
  • [35] Li, D.D., Shi, W. and Deng, X.X. 2002. Agrobacterium-mediated transformation of embryogenic calluses of Ponkan mandarin and the regeneration of plants containing the chimeric ribonuclease gene. Plant Cell Rep. 21:153–156.
  • [36] Luth, D. and Moore, G.A. 1999. Transgenic grapefruit plants obtained by Agrobacterium tumefaciens-mediated transformation. Plant Cell Tiss. Org. 57: 219–222.
  • [37] Manthey, J.A., Grohmann, K. and Guthrie, N. 2001. Biological properties of citrus flavonoids pertaining to cancer and inflammation. Curr. Med. Chem. 8: 135–153.
  • [38] Manthey, J.A. and Guthrie, N. 2002. Antiproliferative activities of citrus flavonoids against six human cancer cell lines. J. Agric. Food Chem. 50: 5837–5843. Middleton, Jr.E., Kandaswami, C. and Theoharides, T.C. 2000. The effects of plant flavonoids on mammalian cells: implications for inflammation,heart disease, and cancer. Pharmacol. Rev. 52: 673–751
  • [39] Molinari, H.B.C., Marur, C.J., Bespalhok, J.C., Kobayashi, A.K., Pileggi, M., Leite, R.P., Protasio-Pereira, L.P. and Esteves-Vieira, L.G. 2004. Osmotic adjustment in transgenic citrus rootstock Carrizo citrange (Citrus sinensis Osb. x Poncirus trifoliata L. Raf.) overproducing proline. Plant Science. 167: 1375-1381.
  • [40] Moore, G.A., Jacono, C.C., Neidigh, J.L., Lawrence, S.D. and Cline, K. 1992. Agrobacterium-mediated transformation of citrus stem segments and regeneration of transgenic plants, Plant Cell Rep.11: 238–242.
  • [41] Moore, G.A., Jacono, C.C., Neidigh, J.L., Lawrence, S.D. and Cline, K. 1993. Transformation in citrus. In: Bajaj YPS (ed.) Biotechnology in agriculture and forestry, vol 23, plant protoplasts and genetic engineering IV. Springer, Berlin Heidelberg New York, pp 194–208.
  • [42] Peña, L., Cervera, M., Navarro, A., Pina, J.A., Duran-Vila, N. and Navarro, L. 1995a. Agrobacterium-mediated transformation of sweet orange and regeneration of transgenic plants. Plant Cell Rep.14:616-619.
  • [43] Peña, L., Cervera, M., Juarez, J., Ortega, C., Pina, J.A., Durán-Vila, N. and Navarro, L. 1995b. High efficiency Agrobacterium-mediated transformation and regeneration of Citrus. Plant Sci. 104:183-191.
  • [44] Peña, L., Cervera, M., Juarez, J., Navarro, A., Pina, J.A. and Navarro, L. 1997. Genetic transformation of lime (Citrus aurantifolia Swing): factors affecting transformation and regeneration. Plant Cell Rep. 16:731-737.
  • [45] Pérez-Molphe-Balch, E. and Ochoa-Alejo, N. 1998. Regeneration of transgenic plants of Mexican lime from Agrobacterium rhizogenes-transformed tissues. Plant Cell Rep. 17 :591–596.
  • [46] Rahbe, Y. and Febvay, G. 1993. Protein toxicity to aphids: an in vitro test on Acyrthosiphon pisum. Entomol Exp. Appl. 67: 149–160.
  • [47] Rock, C.D. and Zeevaart, J.A.D. 1991. The aba mutant of Arabidopsis thaliana is impaired in epoxy-carotenoid biosynthesis. Proc. Natl. Acad. Sci. 88:7496–7499.
  • [48] Rao, K.V., Rathore, K.S., Hodges, T.K., Fu, X., Stoger, E., Sudhakar, D., Williams, S., Christou, P., Bharathi, M., Bown, D.P., Powell, K.S, Spence, J., Gatehouse, A.M, and Gatehouse J.A. 1998. Expression of snowdrop lectin (GNA) in transgenic rice plants confers resistance to rice brown planthopper. Plant J. 15:469-477.
  • [49] Gatehouse, J.A., Gatehouse A, and Fitches, E. 1997. Effects of snowdrop lectin (GNA) delivered via artificial diet and transgenic plants on the development of tomato moth (Lacanobia oleracea) larvae in laboratory and glasshouse trials. J Insect Physiol. 43:727-739.
  • [50] Silalahi, J. 2002. Anticancer and health protective properties of citrus fruit components. Asia. Pac. J. Clin. Nutr. 11(1),79–84.
  • [51] Şahin-Çevik, M. 2003. Identification and Characterization of cold-regulated genes in cold-hardy Citrus relative Poncirus trifoliata (L.) Raf. Ph.D Thesis. University of Florida, Gainesville, Florida, 130 pp.
  • [52] Sahin-Çevik M, and Moore GA. 2006a. Identification and expression analysis of cold-regulated genes from the cold-hardy Citrus relative Poncirus trifoliata (L.) Raf. Plant Mol Biol. 262: 83-97.
  • [53] Şahin-Çevik, M. and Moore, G.A. 2006b. Isolation and characterization of a novel RING-H2 finger gene induced in response to cold and drought in the interfertile Citrus relative Poncirus trifoliata. Physiologia Plantarum. 126: 153-161.
  • [54] Şahin-Çevik, M. and Moore, G.Aç 2006c. Two AP2 domain containing genes isolated from the cold-hardy Citrus relative Poncirus trifoliata are induced in response to cold. Functional Plant Biology 33: 863–875
  • [55] Sauvion, N., Rahbe, Y., Peumans, W.J., van Damme, E., Gatehouse, J.A. and Gatehouse, A.M.R. 1996. Effects of GNA and other mannosebinding lectins on development and fecundity of the peachpotato aphid. Entomol. Exp. Appl. 79: 285–293. Wong, W.S., Li, G.G., Ning, W., Xu, Z.F., Hsiao, W.L.W., Zhang, L.Y. and Li, N. 2001. Repression of chilling-induced ACC accumulation in transgenic citrus by over-production of antisense1-aminocyclopropa ne-1-carboxylate synthase RNA. Plant Science 161: 969–977.
  • [56] Van Damme, E.J.M., DeClerq, N., Claessens, F., Hemschoote, K., Peeters, B. and Peumans, W. 1991. Molecular cloning and characterisation of multiple isoforms of the snowdrop (Galanthus nivalis L.) lectin. Planta. 186: 35–43.
  • [57] Vardi, A., Bleichman, S. and Aviv, D. 1990. Genetic transformation of Citrus protoplasts and regeneration of transgenic plants. Plant Sci. 69:199–206.
  • [58] Yang, Z.N., Ingelbrecht, I.L., Louzada, E., Skaria, M. and Mirkov, T.E. 2000. Agrobacterium-mediated transformation of the commercially important grapefruit cultivar Rio Red (Citrus paradisi Macf.). Plant Cell Rep. 19:1203-1211.
  • [59] Yao, J.L., Wu, J.H., Gleave, A.P. and Morris, B.A.M. 1996. Transformation of citrus embryogenic cells using particle bombardment and production of transgenic embryos. Plant Sci. 113; 175–183.

Show References

Citation type: APABayram Çevi̇k, Mehtap Şahi̇n Çevi̇k. (2018). METAL BIOACCUMULATION/TOXICITY TEST FOR METAL INDUSTRY WASTEWATERS. Ulusal Çevre Bilimleri Araştırma Dergisi, 1 ( 1 ) , 1-5. http://ijepem.com/volume-1/issue-1/article-1/
Citation: BibTex@article{2018, title={METAL BIOACCUMULATION/TOXICITY TEST FOR METAL INDUSTRY WASTEWATERS}, volume={1}, number={1}, publisher={International Journal of Environmental Pollution and Environmental Modelling}, author={Bayram Çevi̇k, Mehtap Şahi̇n Çevi̇k}, year={2018}, pages={1-5} }
Citation type: MLABayram Çevi̇k, Mehtap Şahi̇n Çevi̇k. METAL BIOACCUMULATION/TOXICITY TEST FOR METAL INDUSTRY WASTEWATERS. no. 1 International Journal of Environmental Pollution and Environmental Modelling, (2018), pp. 1-5.